A Neuro-Fuzzy Expert System Trained by Particle Swarm Optimization for Stock Price Prediction

نویسندگان

  • Mohammad Hossein Fazel Zarandi
  • Meysam Alizadeh
چکیده

In today’s competitive markets, prediction of financial variables has become a critical issue. Especially in stock market analysis where a wrong prediction may result in a big loss in terms of time and money, having a robust prediction is a crucial issue. To model the chaotic, noisy, and evolving behavior of stock market data, new powerful methods should be developed. Soft Computing methods have shown a great confidence in such environments where there are many uncertain factors. Also it has been observed through many experiments that the hybridization of different soft computing techniques such as fuzzy logic, neural networks, and meta-heuristics usually results in better results than simply using one method. This chapter presents an adaptive neuro-fuzzy inference system (ANFIS), trained by the particle swarm optimization (PSO) algorithm for stock price prediction. Instead of previous works that have emphasized on gradient base or least square (LS) methods for training the neural network, four different strategies of PSO are implemented: gbest, lbest-a, lbest-b, and Euclidean. In the proposed fuzzy rule based system some technical and fundamental indexes are applied as input variables. In order to generate membership functions (MFs), a robust noise rejection clustering algorithm is developed. The proposed neuro-fuzzy model is applied for an automotive part-making manufactory in an Asia stock market. The results show the superiority of the proposed model in comparison with the available models in terms of error minimization, robustness, and flexibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Application of type-2 neuro-fuzzy modeling in stock price prediction

We present an application of type-2 neuro-fuzzy modeling to stock price prediction based on a given set of training data. Type-2 fuzzy rules can be generated automatically by a self-constructing clustering method and the obtained type-2 fuzzy rules cab be refined by a hybrid learning algorithm. The given training data set is partitioned into clusters through input-similarity and output-similari...

متن کامل

Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)

Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

Optimization and design of Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and Fuzzy C-Means Clustering to predict the scour after bucket spillway

Additionally, if the materials at downstream of bucket spillway are erodible, the ogee spillway is likely to overturn by the time. Therefore, the prediction of the scour after bucket spillway is pretty important. In this study, the scour depths at downstream of bucket spillway are modeled using a new meta-heuristic model. This model is developed by combination of the Adaptive Neuro-Fuzzy Infere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016